
 

 

NAVAL 
POSTGRADUATE 

SCHOOL 

MONTEREY, CALIFORNIA 

THESIS 
 

USE OF PACKET CAPTURE (PCAP) SOFTWARE FOR 
VIRTUAL ACCESS POINT CORRELATION 

by 

Corey E. Lutton 

March 2019 

Thesis Advisor: John D. Roth 
Co-Advisor: James B. Michael 

 

Approved for public release. Distribution is unlimited. 



THIS PAGE INTENTIONALLY LEFT BLANK 



 REPORT DOCUMENTATION PAGE  Form Approved OMB 
No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of 
information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
March 2019

3. REPORT TYPE AND DATES COVERED
Master's thesis

4. TITLE AND SUBTITLE
USE OF PACKET CAPTURE (PCAP) SOFTWARE FOR VIRTUAL ACCESS 
POINT CORRELATION

5. FUNDING NUMBERS

6. AUTHOR(S) Corey E. Lutton

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School 
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT 
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES) 
N/A

10. SPONSORING /
MONITORING AGENCY 
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE 
A

13. ABSTRACT (maximum 200 words)
 Virtual access points (VAP) are a commonly utilized method to broadcast service set identifiers (SSID) 
with different privilege levels from the same access point (AP). While research has been focused on 
securing information transmitted using the IEEE 802.11 standard and the authentication of users on wireless 
local area networks (WLAN), little attention has been given to the security of VAPs utilized on APs to 
determine whether the presence of a less-privileged, less-secured SSID is a security vulnerability for the AP 
that hosts it. In this thesis, we collected beacon frames from VAPs hosted on WLAN APs and attempted to 
correlate VAPs using graph theory and beacon frame characteristics. We discovered that it is possible to 
correlate beacon frames using the beacon frame timestamp and, to a lesser extent, the received signal 
strength indicator. 

14. SUBJECT TERMS
virtual access point correlation, VAP correlation, IEEE 802.11, wireless, WIFI, graph 
theory, packet capture, Wireshark, Tshark, Gephi

15. NUMBER OF
PAGES 

103
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF 
REPORT 
Unclassified

18. SECURITY
CLASSIFICATION OF THIS 
PAGE 
Unclassified

19. SECURITY
CLASSIFICATION OF 
ABSTRACT 
Unclassified

20. LIMITATION OF
ABSTRACT 

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18

i 



THIS PAGE INTENTIONALLY LEFT BLANK 

ii 



Approved for public release. Distribution is unlimited. 

USE OF PACKET CAPTURE (PCAP) SOFTWARE FOR VIRTUAL ACCESS 
POINT CORRELATION 

Corey E. Lutton 
Lieutenant, United States Navy 

BS, University of Illinois at Urbana-Champaign, 2009 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

from the 

NAVAL POSTGRADUATE SCHOOL 
March 2019 

Approved by: John D. Roth 
 Advisor 

 James B. Michael 
 Co-Advisor 

 Peter J. Denning 
 Chair, Department of Computer Science 

iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

iv 



ABSTRACT 

 Virtual access points (VAP) are a commonly utilized method to broadcast service 

set identifiers (SSID) with different privilege levels from the same access point (AP). 

While research has been focused on securing information transmitted using the IEEE 

802.11 standard and the authentication of users on wireless local area networks (WLAN), 

little attention has been given to the security of VAPs utilized on APs to determine 

whether the presence of a less-privileged, less-secured SSID is a security vulnerability for 

the AP that hosts it. In this thesis, we collected beacon frames from VAPs hosted on 

WLAN APs and attempted to correlate VAPs using graph theory and beacon frame 

characteristics. We discovered that it is possible to correlate beacon frames using the 

beacon frame timestamp and, to a lesser extent, the received signal strength indicator. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT 

The Department of Defense (DoD) makes extensive use of technology that 

implements the Institute of Electrical and Electronics Engineers (IEEE) 802.11 wireless 

networking (WIFI or Wi-Fi) standards. A large body of research exists in literature on the 

weaknesses and vulnerabilities of transmitted data in wireless local area networks (WLANs). 

Despite this, here has been little research reported in the open literature into the security of the 

access points (APs) that the WLAN depend upon to transmit and receive data. It is imperative 

to better understand the weaknesses inherent in WIFI router technology in order to develop 

and implement practices to enhance the security afforded by APs, in particular, making APs 

resistant to an adversary’s attempts to penetrate or subvert them. 

B. MOTIVATION AND BACKGROUND 

WLANs allow many users wireless access over a dispersed area. Use of WLANs 

has become more commonplace due to the relative ease of set-up and ability to increase 

network coverage compared to traditionally wired local area networks (LANs). These 

networks have been a net positive for users and administrators of WLANs since they are 

able to easily authenticate and connect their mobile devices to the network. However, 

wireless communications introduce security concerns that need to be addressed. 

Efforts to secure WLANs tend to center on authentication of clients wishing to join a 

network by requiring the client to enter a password and then protecting the confidentiality of 

the data that is transmitted between the AP and the client via encryption. One type of 

vulnerability that requires additional investigation arises when an AP uses multiple virtual 

access points (VAPs) to broadcast multiple service set identifications (SSIDs), and each SSID 

has a different level of access and protection. A SSID is a string of characters which uniquely 

identifies a WLAN. For example, in [1] it is explained that an AP can have two VAPs, one 

broadcasting “My_SSID” for trusted users and the other broadcasting “My_SSID_Guest” for 

less trusted users. The intention of VAPs is to reduce the number of physical APs required to 

provide wireless network access. This thesis explores whether the aforementioned practice 
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allows malicious actors to attack the least-protected SSID. The attacker could use this as a 

vector to gain access to the physical AP and thereby compromise it. 

The exploration of this potential vulnerability is worth addressing in order to begin 

the discussion of what steps and techniques security professionals can take to mitigate the 

risks associated with the vulnerability. 

C. BENEFITS OF STUDY 

A review of DoD and federal government publications regarding the deployment 

and securing of IEEE 802.11 WLAN technology does not address the potential 

vulnerability presented by an AP utilizing VAPs to broadcast SSIDs at different 

authentication and privilege levels. The publication, A Guide to Securing Networks for Wi-

Fi (IEEE 802.11 Family) published by the U.S. Department of Homeland Security [2] 

recognizes the following vulnerabilities to trusted networks:  

• hidden or rogue APs 

• misconfigured APs 

• banned devices due to organizational policy 

• authorized clients using devices that have accessed unsecured and 

unmonitored networks 

• unauthorized clients using the trusted network 

• devices that either share their Internet connection to untrusted device or 

allow simultaneous connection to trusted and untrusted networks 

• unauthorized AP-to-AP associations 

• unauthorized peer-to-peer connections 

• malicious APs designed to appear as legitimate ones 

• denial of service (DoS) attacks against the trusted network 
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A system administrator could carefully configure and guard a United States Government 

or DoD trusted network from each of these valid vulnerabilities, but the APs may still be 

vulnerable. This vulnerability list needs to include a solution to close the exploitation 

vulnerability for APs broadcasting multiple SSIDs by using VAPs. 

The National Institute of Standards and Technology (NIST) publication, Guide to 

Securing Legacy IEEE 802.11 Wireless Networks, takes a more comprehensive approach 

to WLAN security. NIST’s publication states that the common security objectives of a 

WLAN are: protecting the confidentiality of data on the WLAN, protecting the integrity of 

data on the WLAN, and ensuring the availability of WLAN resources [3]. The publication 

further acknowledges that “passive eavesdropping on legacy IEEE 802.11 WLAN 

communications may cause significant risk to an organization. An adversary can scan radio 

frequency (RF) signals and capture data traversing the wireless medium. Sensitive 

information, including proprietary information, network IDs [identifications] and 

passwords, and configuration data, are some examples of data that may be captured” [3]. 

These data are not limited to the data exchanged between the AP and a client when the 

client utilizes the WLAN. It also includes beacon frame data that are transmitted by the AP 

to permit clients to discover and join the WLAN. 

In “Analysis of Security Issues and Their Solutions in Wireless LAN,” the authors 

review passive and active attacks that can be conducted against an IEEE 802.11 WLAN. 

Under passive attacks, the authors state: 

By their nature, wireless LANs intentionally radiates network traffic into 
space. This makes it impossible to control who can receive the signals in 
any wireless LAN installation. In the wireless network, eavesdropping by 
third parties is the most significant threat because the attacker can intercept 
the transmission over the air from a distance, away from the premise of the 
company. The attacker monitors wireless data transmissions between 
devices for message content, such as authentication credentials or 
passwords[4]. 

By the very nature of a WLAN’s ability to cover a wide area, the same coverage area also 

provides the potential that a malicious actor can be located outside of the institution’s 

physical boundaries and passively surveil, and capture data being broadcast by the WLAN. 

Passive surveillance with long standoff distances is an acknowledged problem, but what 
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has not been fully explored is the data being broadcast by the AP prior to a client joining 

the WLANs. 

To date, no one has published the results of research that would answer the 

following questions: Do beacon frames present a security vulnerability to APs by allowing 

a malicious actor/adversary to use widely available tools to correlate a weakly protected 

SSID to a physical AP? Moreover, which attributes of beacon frames, if any, create an 

exploitable vulnerability? 

D. RESEARCH GOALS AND SCOPE 

The goal of the research documented in this thesis is to determine to what extent 

the use of VAPs present exploitable vulnerabilities. We limit the scope of our research to 

exploring whether it is possible to use graph-based correlation techniques applied to beacon 

frames as a reconnaissance tool to aid in the correlation of WLAN APs. Our research 

addresses the following questions: 

• Can graph theory be effectively applied to detect the presence and number 

of VAPs present on an AP? 

• Which beacon frame fields are the best to determine the presence and 

number of VAPs on an AP? 

• What actions can be taken to mitigate a malicious actor’s ability to 

identify and correlate multiple VAPs to an AP? 

E. KEY FINDINGS AND CONCLUSIONS 

In this thesis, three methods are examined and analyzed to determine their utility 

for correlating an AP’s VAP via beacon frame attributes: the beacon frame timestamp, 

received signal strength indicator (RSSI), and the reception time of the beacon frames. Of 

those three methods, the method predicated on using beacon frame timestamps provided 

the best results. RSSI provided moderate to low correlation ability, and reception time 

provided negligible correlation ability. 
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The results of the study indicate that in order for a defender to guard against an 

adversary’s ability to correlate VAPs, the defender should cycle power to the WLAN so 

that all APs share the same timestamp. Once the timestamp is eliminated as a means of 

correlation, further correlation of VAPs via RSSI is hampered by multipath interference of 

the APs in the surrounding area. If the WLAN is located inside a building, the indoor 

environment is sufficient to mitigate the RSSI method of correlating VAPs. 

F. THESIS ORGANIZATION 

Chapter II reviews the 802.11 standard, the role of beacon frames, probe requests, 

and probe responses in a WLAN, as well as basic wireless network components as they 

relate to this thesis. Chapter II reviews basic graph theory, measuring communities in a 

graph via modularity, and examines previous work conducted in VAP correlation and how 

that work is built upon and expanded in this thesis. Chapter III documents the procedure 

and tools for conducting our experiments with a real-world WLAN. Chapter IV presents 

the results of the experiments and a comparison of the correlation techniques explored in 

this study. Chapter V provides conclusions and suggestions for further research. 
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II. BACKGROUND 

The purpose of this chapter is to examine previous research that makes VAP 

correlation to an AP possible. Topics covered here are graph theory and its applicability as 

well as the IEEE 802.11 standard for wireless beacon frames and the role it plays in AP 

discovery for a client device. 

A. IEEE 802.11 WIRELESS STANDARD 

The IEEE 802.11 wireless standard is more commonly referred to as “WIFI” or 

“WI-FI.” WIFI is a robust and dynamic way for clients to access the wider Internet to send 

and receive information via the WLAN on which they are operating. The wireless nature 

of WIFI allows connected clients to be highly mobile within the coverage area provided by 

the wireless APs and permits greater freedom of movement for connected clients. This 

makes WIFI an excellent choice in situations where connected clients are likely to move 

frequently, such as educational institutions and business settings. 

IEEE 802.11 has several distinct variants which have been introduced to remedy 

shortcomings in previous standards, address evolutions in technology, or add 

improvements to existing standards. In [5], Gast explains that the IEEE 802.11 task groups 

working on a standard are assigned a lower-case letter, which signifies that the standard is 

dependent upon the parent standard. The first wireless standard, 802.11, was introduced by 

the IEEE in 1997 [5]. He further explains that since then, subsequent standards have been 

introduced to improve upon security and data transmission. According to [6], there are 17 

active IEEE 802.11 standards as of this writing. The networks observed in this study are 

exclusively 802.11n, which [5] explains was the result of an IEEE 802.11 task group that 

was founded to create a standard that supported high data throughput. 

B. WIRELESS NETWORK COMPONENTS 

Gast details in [5] that in its most basic form, a WLAN consists of a client, an AP, 

and a distribution system. A client is any wirelessly enabled device, such as a laptop or 

cellular phone, that is seeking to connect to a WLAN. He further explains that an AP is the 
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device which advertises the presence of a network through beacon frames and probe 

responses as well as serving as a bridge between the distribution system and the client. 

Finally, the distribution system is used to forward frames to their destination and allow 

communication between APs to track the movements of mobile clients [5]. 

The network that is formed by an AP or a group of APs communicating with one 

another is called a basic service set (BSS) [5], [7]. Initially, APs had the capability to create 

a single BSS with all users on that BSS having the same privileges [5]. Later, when demand 

grew for segregating wireless users into trusted and untrusted user groups, APs were 

developed that could create multiple BSSs simultaneously with different privilege levels 

possible for each BSS [1]. 

C. IEEE 802.11 STANDARD FOR NETWORK MANAGEMENT FRAMES  

Once a BSS is set up, the APs in the BSS have to utilize management frames to 

authenticate clients to the WLAN, associate clients to an AP, and provide network services 

to the clients that are utilizing the WLAN [5]. In [5], the author details 14 management 

frames used in WLANs: beacon, probe requests, probe responses, independent basic 

service set (IBSS) announcement indication traffic map (AITM), dissociation, de-

authentication, association request, re-association request, association response, re-

association response, authentication frames, and action frames. He further explains that 

these management frames are divided into three classes, with each class handling a 

different network state. Network state one is where a client is not authenticated or 

associated with an AP [5]. State two is where a client is authenticated with an AP, but not 

associated [5]. State three is where a client is both authenticated and associated with an AP 

and can send data to and receive data from the AP [5].  

Gast explains in [5] that class one management frames consist of probe requests/

responses, beacon, authentication/de-authentication, and AITM. He further details that 

these frames can be transmitted at any network state and provide the basic operations used 

by WLAN clients. In addition, they allow clients to find a WLAN and authenticate 

themselves to it. Class two management frames consist of association request/response, re-

association request/response, and disassociation [5]. They are transmitted only after the 
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client has authenticated itself with the WLAN and can be used in network states two and 

three [5]. Class three management frames consist of de-authentication and are used when 

a client has both authenticated and associated with an AP [5]. 

Beacon frames are transmitted from an AP at set intervals, which are specified in the 

beacon interval field [5]. They serve as wireless network management frames that announce 

the presence of a wireless network and perform an important role in many different network 

maintenance tasks [5]. Their primary function is to allow client devices to discover a WLAN 

and transmit the parameters required for joining the network [5]. The structure of a beacon 

frame, including mandatory and optional fields, can be seen in Figure 1. 

 

Figure 1. Beacon frame structure. Source: [8]. 

In [7], there are a combined 68 mandatory and optional fields are specified to be in 

the beacon frame body. It states that the mandatory fields consist of the beacon frame 

timestamp, the beacon interval, capability information, the SSID, the supported rates, and 

BSS membership selectors. Among the optional fields are the basic service set 

identification (BSSID), the time advertisement, and what the IEEE calls the “vendor 

specific” field. The BSSID is used to identify different LANs in the same area and is the 

media access control (MAC) address of the wireless interface in the AP [5]. Finally, the 

vendor specific field is at the end of the beacon frame and contains whatever data an AP 

vendor wants to include and does not have a standard format [1], [7]. 
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Clients also utilize probe requests to query for APs in their surrounding area [5]. In 

order for the client to join the network, the client must support all of the data rates required 

by the WLAN [5]. The probe request frame structure can be seen in Figure 2. 

 

Figure 2. Probe request frame. Source: [8]. 

If a wireless network receives a probe request that contains compatible parameters, it will 

send a probe response in return [5]. The AP designated to respond to the client’s probe 

request is the AP that sent the last beacon frame [5]. A probe response carries all of the 

parameters of the beacon frame which allows a receiving client to match the parameters 

and join the wireless network, such as beacon interval, timestamp, and sequence number 

[1], [5]. The probe response frame structure can be seen in Figure 3. 

 

Figure 3. Probe response frame. Source: [8]. 
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Similar to the beacon frame, the probe response also has a vendor specific field where 

device vendors can place data [5]. The authors in [1] refer to this field as the “vendor 

specific information elements.” 

D. GRAPH THEORY AND ITS APPLICABILITY TO VAP CORRELATION 

West defines a graph as “a triple consisting of a vertex set V(G), an edge set E(G), 

and a relation that associates with each edge two vertices (not necessarily distinct) called 

its endpoints” [9]. Under this definition, graphing two or more objects of interest as vertices 

and creating an edge set between them allows a more in-depth analysis by providing an 

ability to analyze their relationship with each other. This provides a visual model of the 

relationship between them.  

Graphs can be described by an adjacency matrix. In [10], Biggs describes an 

adjacency matrix as: The adjacency matrix of Γ is the n x n matrix Α=Α(Γ) whose entries 

aij are given by 

. 

Here, Γ is used to refer to the graph, which will be referred to as G in this study. Suppose 

that there is a graph G, with a vertex set V(G)={1,2,3} and an edge set E(G)={12,23,31}. 

Such a graph would look like Figure 4. 

Figure 4. An example of a graph constructed from a 
three vertex and edge set 
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The edges depicted in Figure 4 are considered undirected because they do not start at one 

vertex and end at another. A directed edge would be signified by directed arc pointing to 

its destination vertex. Because the edge set does not have edges that originate and terminate 

at the same node (i.e., 11, 22, or 33), it is said to not have any self-loops. Edges in a graph 

can show a relationship between the connected vertices. A weight can be assigned to an 

edge with higher values corresponding to a stronger relationship between the vertices. In 

Figure 4, all of the edges on the edge set have been given an edge weight of 1. 

Figure 4 can be represented as A(G) or the adjacency matrix for graph G. An 

adjacency matrix is constructed by using the rows and columns of the matrix as indices for 

the graph with “1” representing a connection between those vertices and a “0” if there is 

no connection between them. For the graph depicted in Figure 4, the adjacency matrix 

would be constructed as follows: 

 

with A(G) taking the form 

. 

This adjacency matrix can also be described as symmetric due to the fact that the values in 

the adjacency matrix are reflected along the diagonal [9]. 

There are many systems that function as networks and can be analyzed via graph 

theory. In [11] the authors offer the example of a social network which consists of a 

network of friendships and acquaintances between individuals. They assert, in such a 

network, it can be expected that there are communities that reside within the larger 

interconnected network. In each of these communities, the connections between vertices 
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may be quite dense. Outside of these communities, there will be fewer connections, or 

edges, to other communities of vertices. An example of how a community of vertices might 

look in an undirected graph can be seen in Figure 5. 

 

Figure 5. Example of communities of vertices with edges between them. 
Source: [12]. 

This same model can also be used to determine if distinct communities exist within 

the larger interconnected network. One method of measuring the structure of a graph is 

called “modularity” [12]. Newman describes modularity as: 

This idea, that true community structure in a network corresponds to a 
statistically surprising arrangement of edges, can be quantified by using the 
measure known as modularity. The modularity is, up to a multiplicative 
constant, the number of edges falling within groups minus the expected 
number in an equivalent network with edges placed at random … The 
modularity can be either positive or negative, with positive values 
indicating the possible presence of community structure. Thus, one can 
search for community structure precisely by looking for the divisions of a 
network that have positive, and preferably large, values of the modularity. 
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The ability to detect individual communities of vertices inside the larger set of vertices 

allows for finer granularity in determining relationships that exist within those 

communities. 

The authors in [13] provide an example of how modularity for a network is 

determined. The derivation that follows is from their method in [13]. Let Avw be an element 

of an adjacency matrix where Avw is 1 if vertices v and w are connected and 0 if not. 

Suppose that the vertices are divided into communities such that vertex v belongs to 

community cv and vertex w belongs to community cw, these communities are also known 

as modularity classes. The number of meaningful edges that fall within any community is: 

, 

where the  function, , is 1 if i and j fall into the same community and 0 if they do 

not [13]. The authors assert that the number of the edges, m, in the graph is determined by:  

. 

The degree kv of vertex v is defined as the number of edges that connect to vertex v and 

can be determined by the function: 

 [13]. 

The probability that an edge exists between the vertices v and w if connections are random 

while still respecting vertex degrees is 

[13]. 

Modularity, Q, can then be defined as: 

[13]. 
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Communities are divided into two at a time, with the goal being to always increase Q [13]. 

Q can also be negative, which means that the division decreased the modularity measure 

[13]. 

The authors in [1] describe why they prefer Newman’s modularity measure method. 

They state that Newman’s method enjoys a relative success among other partitioning 

methods due to the reason that Q provides a measurement of whether the partition was 

desirable or not. Once Q ceases to be positive, it indicates that any further divisions will 

negatively impact modularity and a stopping point has been reached. They also indicate 

that while the modularity measure requires successive trials to determine whether a 

partition is the most optimum, the fact that there exists a natural stopping point in this 

method is valuable. 

E. PREVIOUS WORK IN VAP CORRELATION 

In [14], the authors presented three approaches to utilize WLANs to conduct indoor 

fingerprint-based localization of a client device. This study was designed to examine and 

present methods for a client device to accurately determine its position in an area. The 

authors approached this by correlating VAPs to APs based on their RSSI. The RSSI is a 

measurement of the received beacon frames or data frames by the client [8]. This was then 

used to create what the authors in [14] called the APs’ fingerprint and they utilized the AP 

locations as reference points to determine the location of the client device. To do this, the 

authors divided their WIFI fingerprinting into two phases: online and offline. In the offline 

phase, they used a client to collect RSSI vectors from the APs serving as reference points 

and place that information into a database. In the online phase of the study, the client device 

was used to conduct measurements of the RSSI vector of where the client device is located. 

The authors then estimated the client device’s location by matching the measured RSSI 

with the closest fingerprinted RSSI in their database. 

As a part of the process in [14], the authors needed to correlate VAPs to APs in 

order to ensure that they were only using one RSSI per AP. They stated that using RSSI 

vectors from VAPs originating from the same AP increased computational redundancy 

while doing little to improve their method’s location accuracy. The authors accomplished 
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this by computing the pairwise correlation between the RSSI values amidst the reference 

APs. If the APs had a high degree of correlation, the authors judged them to be coming 

from the same AP, and therefore they were categorized as VAPs being broadcast from the 

same AP.  

In [14], the authors considered each AP recognized by the client as a vertex in a 

graph with an edge existing between vertices if they were calculated to be highly correlated. 

The resultant graph was then subjected to a clique-finding algorithm the authors devised to 

seek out the communities of vertices that shared edges, which were merged into a single 

AP. The RSSI vectors for each vertex for the merged group were then averaged in order to 

represent their broadcasting AP’s RSSI. 

The authors of [14] were primarily focused on correlating VAPs to eliminate 

redundant data when conducting their localization. As a result, the authors’ pairwise 

correlation calculations only take into account the RSSI vectors that were collected during 

the offline phase of their experiment and does not seek to definitively determine whether 

the APs that are calculated to have a high degree of correlation are falsely grouped together 

in their algorithm or not. This study seeks to build upon the previous work of [14] by 

utilizing RSSI as a method to correlate VAPs. Unlike [14], this study will also determine 

the reliability of utilizing RSSI as a correlation feature. 

In [1], the authors take the VAP correlation findings of [14] and develop it further 

by refining the application of graph theory to correlate VAPs to an AP and researched other 

methods of correlating VAPs besides the RSSI method detailed in [14], which can vary 

based off of wave interference and location. To that end, [1] makes seven propositions on 

similarity features found in probe responses between VAPs where vi represents the ith 

BSSID and a vertex in the graph G. Furthermore, the set of all M observed BSSIDs 

originating from the same device are represented by 

.  

The seven propositions that are proposed in [1] are: 
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• Proposition one: Vertex vi is not similar to vj if ßi≠ ßj, where ßi is the 

beacon interval set for vi. 

• Proposition two: Vertex vi is similar to vj if 

 , 

where  

, 

 is the timestamp of vi, tr is the time of reception, and ε is some small number. 

• Proposition three: Vertex vi is similar to vertex vj if  

,  

where si and sj are sequence numbers attached to probe responses from vi 

and vj respectively and ε is some small number. 

• Proposition four: Vertex vi is similar to vertex vj if vi=vj, where vi is the 

vendor specific information element of vi. 

• Proposition five: Vertex vi is similar to vertex vj if si=sj , where si is the 

signature of vi. The signature being determined by combining the set of 

information elements in the probe request. 

• Proposition six: Vertex vi is similar to vertex vj if the middle four octets of 

the MAC address belonging to vi and vj are identical. 

• Proposition seven: Vertex vi is similar to vertex vj if  

, 
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where ti and tj are the times of reception at client uk of a probe response 

from vi and vj respectively. 

The authors in [1] then propose a method to determine vertex adjacency, or whether 

two vertices are connected, on graph G. First, the client is placed in a set consisting of all 

observed clients. This set, which the authors call V, consists of the subset of BSSIDs. V is 

then used in the expression Vi{K} where each K is an index within the set V on the physical 

AP and i represents the ith subset of BSSIDs originating from the same physical AP. The 

authors assert that if K>1, then each element of set V is considered a VAP. They continue 

to assert that if K=1, then there is only one BSSID associated with the AP and therefore 

the singular BSSID is not a VAP. 

The following is a summary of the derivation used in [1] to determine vertex 

adjacency. The authors of [1] state that upon the reception of a probe request from a client, 

the VAPs on the AP will send K probe responses  

. 

This will create 

 

edges between the vertices and the graph G. The structure of G is represented by adjacency 

matrix A which [1] defines as: 

, 

where  
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if and only if vi is adjacent, or connected, to vj and 

 

if they are not [1]. 

In [1], they further define the multidimensional graph , where each dimension 

is a feature being evaluated, for each of the similarity metrics via the product function 

. 

With each adjacency matrix A representing another dimensional space of the graph [1]. 

The authors choose to view Ak as multiple dimensions of the overall graph . They project 

the information from each of the dimensions in  onto a single dimension, represented 

by graph G, by using the mapping function 

. 

This function f is defined by the authors as their voting function that defines the voting 

weight for each of the K features based on the amount of information that particular feature 

carries. 

The authors of [1] posit the final G that is generated is an unweighted, undirected, 

symmetric graph. They seek to determine communities within the overall graph, VAPs 

being broadcast by the same physical AP, by utilizing the work in [13] to divide their 

vertices into separate communities. This results in communities consisting of the estimated 

BSSID relationships thereby creating an estimation of which VAPs are correlated to one 

another [1]. 

The study conducted in [1] advances the features to correlate VAPs, but the authors 

focus only on the examination of the information contained in probe responses, which are 

dependent upon a client device sending a probe request. The results produced a smaller 

data set than what would have been provided if they had examined beacon frames, which 
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are regularly broadcast by APs regardless of whether client devices are present or not. This 

thesis seeks to examine beacon frames using selected features from [1] to determine if it is 

possible to correlate VAPs using only the information contained in an AP’s beacon frame. 

  



21 

III. EXPERIMENTAL SETUP

This chapter reviews the experimental tools and set-up used for this study as well 

as the procedures to parse and analyze the data, as seen in Figure 6. The goal of designing 

the experiment and selecting the tools used for the collection and analysis of data is to 

simulate the ability of a real-world malicious actor to collect and correlate VAPs. 

Figure 6. Overview of workflow for the data collection and 
analysis in this thesis 

A. WIRESHARK/TSHARK 

Wireshark version 2.6.3 is a widely used packet capture (PCAP) application that 

allows for fine-grain analysis of packets and protocols that are being transmitted on a 

network. It supports many different file capture formats and allows great flexibility in 

analysis of the captured packets [15]. Wireshark is used in this experiment due to its wide 

availability, ease of use, and its ability to export selected fields from the packet capture 

session into a comma separated value (CSV) document. 
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Tshark version 2.6.3 is network protocol analyzer accessible from the command 

line. It functions much like Wireshark in its ability to capture and display data from a 

network or read packets from a saved capture file. Tshark will use the PCAP library to 

capture network traffic from the first available network interface on the capture device and 

display a capture summary line via standard output for each packet that is captured [16]. 

Tshark was utilized in this study to extract selected data fields from the PCAP file 

generated by Wireshark to a CSV file for further analysis. Wireshark does not have the 

ability to export selected data fields or the ability to export data in a format other than pcap 

and pcapng.  

B. GEPHI 

Gephi version 0.9.2 is an open-source network visualization tool for generating 

three-dimensional rendering of large networks to visualize the relationships between nodes 

in the network. It allows users to import data and immediately visualize, manipulate, and 

filter it to better render relationships between the network nodes. Users can utilize the 

graphical user interface (GUI) to calculate graph statistics, including graph modularity 

[17]. The graph modularity measure function in Gephi utilizes the algorithm outlined in 

[18] to determine the graph modularity and the number of vertex communities present in 

the graph. Users can import graph nodes and edges in separate CSV files and export the 

final graph file containing Gephi-generated graph statistics. 

C. PYTHON 

Python is a high-level programming language with many different third-party plug-

in modules designed for data manipulation and evaluation [19]. In this experiment, the 

following modules were utilized for visualizing, parsing, and manipulating the data 

exported from Wireshark: Matplotlib, Pandas, Random, Datetime, Decimal, Itertools, 

Functools, Seaborn, and Numpy. In addition, Python was utilized to calculate the recall, 

precision, and F-Scores of all of the correlation methods examined during this study. All 

of the software developed for use in this study is included in Appendix A, Appendix B, 

Appendix C, and Appendix D. 
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D. EXPERIMENT PREPARATION 

The experiment was conducted at a location with an enterprise-level WLAN that 

supports thousands of mobile users on a daily basis. The location’s information technology 

department provided permission to conduct the experiment. The department’s assistance 

was necessary to understand the placement of APs in the data collection area. This 

information also provided the ground truth of how the observed VAPs correlated to 

physical APs, facilitating the creation of a test oracle for gauging the effectiveness of the 

correlation techniques explored in this thesis. 

Data collection takes place while the collector is stationary inside of a room in a 

five-story building with windows. On the floor the data collection was conducted there are 

nine APs. Of those, beacon frames for four APs were collected at sufficient RSSI to analyze 

for this study. 

E. BEACON FRAME ATTRIBUTES IDENTIFIED AS POSSIBLE 
CORRELATION FEATURES 

While all of the mandatory and optional fields in a beacon frame contain data that 

are needed by a client attempting to connect to the network, only a relatively few contain 

information that is useful in correlating the broadcasted VAP to a physical AP. The fields 

identified in this study as possessing potential for VAP correlation and being evaluated by 

this study are: timestamp, SSID, BSSID, RSSI, and the beacon frame reception time. These 

attributes were selected based on the results presented in [1] and [14]. In addition, an 

analysis of the 68 mandatory and optional fields of a beacon frame did not reveal any 

further attributes which would provide useful correlation information. 

1. Beacon Frame Timestamp 

The timestamp field is a 64-bit counter in a beacon frame that allows for 

synchronization between the APs in a BSS, as explained in [5]. The timestamp contains 

the time in microseconds that an AP has been active [5]. 
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2. SSID 

In [1], the authors explain that the SSID being broadcast is valuable from a 

classification standpoint. In the event of an AP broadcasting several SSIDs using VAPs, 

the SSID may be used to convey the intended use or user of the VAP. For example, 

“My_SSID” and “My_SSID_Guest” could convey that one SSID is for trusted clients, 

while the other is intended for less trusted clients. This feature is less helpful in a scenario 

where the network administrator has named SSIDs in a less intuitive, more arbitrary way.  

3. BSSID 

Because the BSSID is the MAC address of wireless interface for the AP, then the 

normal conventions for MAC address composition apply [5]. For example, the 

organizationally unique identifier (OUI), which consists of the first three octets of a MAC 

address, is assigned to a manufacturer, company, or vendor of the equipment [20]. In [1], 

the authors found that the second and third octet can also be used as an indicator that two 

VAPs are hosted on the same AP. Furthermore, they found evidence that some AP 

manufacturers will keep the middle four octets of BSSIDs of correlated VAPs the same 

and increment the last octet. 

4. RSSI 

The RSSI, measured in decibel-milliwatt (dBm), provides a measurement of how 

strong or weak the received signals are for the client [6]. Because there is a roughly inverse 

relationship between RSSI and distance to the AP, beacon frames from VAPs that are 

originating from an AP further away should have a weaker RSSI than beacon frames from 

VAPs originating from an AP that is closer.  

5. Beacon Frame Reception Time 

The beacon frame reception time is the time at which Wireshark receives the beacon 

frame. In [1], the authors found promising evidence that probe responses received closely 

together by the client came from VAPs on the same AP. It should follow then that beacon 

frames from VAPs that arrive within a certain time period are correlated. 
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F. TOOLS AND TESTING ENVIRONMENT SET-UP 

Prior to initiating the PCAP session, Wireshark was set up to capture IEEE 802.11 

wireless AP beacon frames. This was done by selecting the correct interface through the 

Wireshark interface GUI as seen in Figure 7. Wireshark was then placed in ‘monitor mode’ 

to display IEEE 802.11 protocol management information.  

 

Figure 7. Wireshark capture interface GUI 

‘Monitor mode’ ensured that the SSID filter was disabled and packets from all SSIDs in 

the area from the currently selected channel were displayed [21]. Once PCAP capture 

commences, Wireshark displays captured packet data in the GUI capture window, as seen 

in Figure 8. 
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Figure 8. Example Wireshark capture of 802.11 information  

G. EXPERIMENT PROCEDURES 

Prior to the commencement of this experiment, we conducted a rudimentary 

parametric study to determine the amount of time needed to collect sufficient beacon 

frames to build the graph. From this study, we determined that 10 to 15 minutes provided 

an adequate number of beacon frames for the purposes of this experiment. For the data 

collection used in this study a single collection trial was conducted for a period of 611 

seconds. In that period, 35,810 network management frames were captured, which included 

beacon frames as well as probe requests, probe responses, and quality of service (QoS) data 

packets. These data were saved in a PCAP file in order to commence data field extraction 

via Tshark. Data extraction via Tshark was executed from the command line interface, as 

seen in Figure 9.  
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Figure 9. Example Tshark command to transfer selected data from a 
PCAP file to a CSV 

The options used in this command consisted of ‘-r’, ‘-T’, ‘-e’, ‘-E’, and ‘>‘. The 

website, [16], details the purpose of all of these options. It states that the ‘-r’ option is used 

to have Tshark read from the PCAP file. The option ‘-T’ followed by ‘fields’ is used to 

indicate that user-specified fields that are being extracted from the PCAP file. The option 

‘-e’ is used to preface each specific Wireshark data field that is desired. The ‘-E’ option 

allows for user-controlled printing of the selected fields and for the use of formatting 

options to control how the data will be displayed in the resulting file. ‘Header’ was set to 

‘y’ to enable a field header to be displayed in the CSV file, ‘separator’ was set equal to ‘,’ 

to insert commas in between values and create the file as a CSV. The argument ‘quote’ is 

set to ‘d’ to cause double quotes to surround the selected fields and ‘occurrence’ is set to 

‘f ‘ to select the first occurrence in the event that there are multiple occurrences for a field. 

Finally, the ‘>‘ option was used to write the resulting data to a CSV file [16]. 

After extracting the fields to the CSV, the resulting data were further refined by 

removing all extraneous network management frames. Any beacon frames with RSSIs less 

than -70 dBm were removed in order to refine the data set to beacon frames that were 

received by the collecting client at sufficient signal strength for analysis. The headers for 

the columns in the CSV were also renamed to “Reception Time,” “Timestamp,” “dBm,” 
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“Frequency,” “Frame Type,” “MAC Address,” “Sequence Number,” and “SSID.” An 

additional column, called “ID” was inserted into the CSV to the left of the “Reception 

Time” column and was numbered in sequential order to provide each beacon frame with a 

unique identification number. The data set was reduced to 5001 beacon frames to lighten 

the computation load while maintaining a sufficient number of beacon frames to observe 

trends. 

Initially a Dell XPS13 laptop was used for data collection and analysis. While the 

Dell laptop collected both network management frames on 2.4- and 5-gigahertz (GHz) 

frequencies, the number of beacon frames was relatively low for the period the collection 

time. Once the experimental procedure was finalized, experimentation took place on a 

MacBook Pro. The MacBook Pro was only able to display network management frames 

on the 5 GHz frequency. However, it was able to collect a greater number of beacon frames. 

Despite reducing the number of beacon frames being analyzed to 5001, this thesis 

encountered data-analysis issues. Gephi was unable to import the edges files for the RSSI 

and reception time experiments due to the size of the files being too large and causing 

Gephi to terminate. Once the number of beacon frames was reduced to 4501, the edge files 

became sufficiently small enough for Gephi to import and display. 

H. EDGE WEIGHTING PROCEDURES 

Python scripts were written to examine possible correlations between VAPs using 

the following beacon frame attributes: timestamp, reception time, and RSSI. In each case, 

the panda’s library was used to import the beacon frame data from the CSV into a data 

frame for analysis. The identification numbers for the beacon frames were placed into two 

separate data frames, one serving as the edge’s origin and the other as the edge’s 

destination, to create unweighted edges between the beacon frames. Because itertools 

created edges between every beacon frame, care was taken to ensure that self-loops were 

not generated. 
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1. Timestamp 

The timestamps for all the beacon frames collected were found to increase without 

differentiation between APs. A possible explanation for this is that the building where the 

observation took place may have had its power cycled. This would mean that power to all 

APs is restored simultaneously and their timestamps start at the same time. In an effort to 

test the validity of utilizing timestamp as a correlation feature, a Python program was 

written to subtract a random number between one and 10,000,000 based off of the BSSID 

for the VAPs, simulating a unique timestamp for each AP observed. The reception time of 

the beacon frame in microseconds, Treception, was subtracted from the unique timestamp to 

account for the incrementing of the timestamp as time passed, as shown in the following 

equation:  

. 

The value  was placed into a data frame to pass to the edge weighting function. 

The edge weighting function takes the unique  for the first beacon frame, , and 

the second , , and performs the following function: 

.  

If  was less than or equal to 500 microseconds, the edge would be given a weight of 

one. Otherwise, it would be given an edge weight of zero. The time period of 500 

microseconds was chosen to allow for small variations in the timestamps that may arise 

from the unknown accuracy of the collection equipment. 

2. Reception Time 

The reception time for receiving the beacon frame, as reported by Wireshark, was 

parsed and turned into a whole number representing the time in microseconds that the 

beacon frame was received. The edge weighting function selected the first reception time, 

RT1, and the second reception time, RT2, and performed the following function: 
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. 

The edge weight, W, was determined by the following rule: 

. 

The values were chosen to weight edges strongly if they were received very closely 

together and to weight edges less strongly if they were received farther apart. 

3. RSSI 

The first RSSI, RSSI1, and the second RSSI, RSSI2, were placed into the following 

function: 

. 

In order to determine edge weight, ∆RSSI, was placed into another function:  

, 

where 0.15 is a tuning constant and W is the resulting edge weight. The value of the 

numerator was determined experimentally by plotting the resulting edges in Gephi and 

calculating the modularity measure of the graph. This weight function was used to assign 

a greater edge weight to beacon frames with RSSIs close to one another. If ∆RSSI was 

greater than a cutoff value of 1dBm, represented by א, then the edge would be assigned a 

weight of zero. This value was selected to prevent assigning edge weights to beacon frames 

that were likely originating from different APs. 



31 

I. ANALYSIS OF RESULTING GRAPHS 

The edges along with their assigned weights were then written into another CSV 

file. The CSV file containing the beacon frame data was then loaded into Gephi as a nodes 

table and the edge weight CSV was loaded as an edges table. Gephi would automatically 

remove the edges that were assigned a weight of zero and only graph the edges that had a 

value greater than zero assigned to them. This data was then graphed in the overview 

window and the built-in modularity measure feature was utilized to determine the number 

of modularity classes in the graph and which modularity class each beacon frame was 

assigned. 

As an additional measure, the data was run through a Python program to determine 

the number of true positives (TPs), false positives (FPs), true negatives (TNs), and false 

negatives (FNs). TPs were defined as beacon frames that were from the same AP and had 

an edge connecting them. TNs were defined as beacon frames that were from different APs 

and did not have an edge connecting them. FPs were defined as beacon frames that were 

from different APs and had edge connecting them. FNs were defined as beacon frames that 

were from the same AP and did not have an edge connecting them.  

TPs, FPs, TNs, and FNs were calculated by dividing the edges into two groups, one 

assigned an edge weight greater than zero, and the other assigned an edge weight of zero. 

TP, FP, TN, and FN were counted according to the following rule: 

. 

where membership to the same AP was determined by the ground truth obtained from the 

technology department. 
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In order to determine the effectiveness of each method, the accuracy, recall, and 

precision were calculated based off the number of TPs, TNs, FPs, and FNs present in the 

graph. Accuracy is the ratio of fraction of correctly classified beacon frames out of every 

single beacon frame in the data set. Accuracy is calculated via the following formula: 

. 

Recall is defined as the fraction of correctly correlated beacon frames over all beacon 

frames that were actually in that group. Recall is calculated via the following formula: 

. 

Precision is defined as the fraction of correctly correlated beacon frames over the total of 

beacon frames that were classified in that group. Precision is calculated via the following 

formula: 

. 

F-score, also known as F1 score, is the scaled geometric mean of both precision and recall. 

A score of one means perfect precision and recall, while zero means it provides neither 

precision nor recall. F-score is calculated via the following formula: 

. 

J. ETHICAL CONSIDERATIONS 

Prior to commencing this experiment, a Human Subject Research Determination 

Request was submitted to the institution review board (IRB) along with the proposal for 

this study. The determination of the IRB was that since this study was collecting 

information that is continuously broadcast by APs and wireless users during normal 

WLAN activity, the study did not fall under human research restrictions. 
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IV. EXPERIMENT RESULTS 

This chapter presents the results of each of the methods proposed in this study and 

reviews their accuracy, precision, recall, and F-Score. In addition, the graphs and 

modularity measures generated by Gephi using data from the proposed methods are 

reviewed. 

A. PREPARATION OF THE GRAPHS IN GEPHI 

Following the edge weighting method, the edges were written to a separate CSV 

file. The beacon frame file was loaded into Gephi as a nodes table and the CSV with the 

edge weights was loaded as an edges file. This resulted in a weighted, undirected graph in 

Gephi. The graph was then displayed as a Fruchterman Reingold graph and the vertices 

were colored by AP. AP one was colored blue, AP two was colored red, AP three was 

colored green, and AP four was colored yellow. The Fruchterman Reingold graph was 

chosen because it displays all communities, both connected and unconnected, making 

visual interpretation of the graph easier. After exporting the graph from Gephi, the 

modularity measure in Gephi was selected to calculate the modularity of the graph as well 

as the number of communities present in the graph. The vertices were then recolored by 

modularity class and exported from Gephi. 

B. TIMESTAMP METHOD 

The timestamp method had an accuracy of 0.900, precision of 1.0, a recall of 0.639, 

and a F-Score of 0.779. The high F-Score due to this method having a high number of TP 

(4431650) and TN (18064444) as well as zero FP and a relatively small amount of FN 

(2508906). This resulted in the weighted, undirected graphs seem in Figure 10 and Figure 

11. 
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Figure 10. Weighted, undirected graph of beacon frames colored by AP and 
correlated by timestamp 

 

Figure 11. Weighted, undirected graph of beacon frames colored by 
modularity class correlated by timestamp 

The modularity measure function in Gephi calculated that the modularity of the graph was 

0.661 with a total of five communities present. Figure 12 depicts the size distribution of 

the number of vertices, or nodes, within each modularity class. 
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Figure 12. Size distribution for beacon frames correlated by timestamp 

In order to determine why AP two had a small community of vertices unconnected 

to the much larger community,  versus reception time was graphed for each AP. Due to 

the large number of beacon frames from each AP, only one in nine data points were graphed 

for Figures 13 through 16. 

 

Figure 13. AP one τ versus reception time 
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Figure 14. AP two τ versus reception time 

 

Figure 15. AP three τ versus reception time 
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Figure 16. AP four τ versus reception time 

The large spike for AP two occurring after 3300000000 microseconds accounts for this 

small community of beacon frames. This is because the weighting function for the 

timestamp method creates a weighted edge only if Δτ for two beacon frames is within 500 

microseconds. The spike just after 3300000000 microseconds is greater than 500 

microseconds apart from the nearest timestamp. There is a similar spike for AP one after 

3300000000 microseconds, however, it was within 500 microseconds of the nearest 

timestamp. The jitter observed in all four figures is possibly the result of inaccuracies 

introduced by the times recorded by Wireshark,  

C. RECEPTION TIME METHOD 

The reception time method had an accuracy of 0.722, precision of 0.133, a recall of 

0.0005, and a F-Score of 0.0009. The reason the accuracy is relatively high while the F-

Score is poor is due to the method’s high number of TN (18042782) combined with its TP 

(3330) generated by the edge weighting function. The resulting weighted and undirected 

graph as seen in Figure 17. 
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Figure 17. Weighted and undirected graph of beacon frames 
correlated by reception time 

When the modularity measure function was initiated in Gephi, the program 

calculated that the modularity of the weighted undirected graph was 0.999 and that there 

were 5,252 communities present. This was due to the edge weighting function assigning 

large weights to beacon frames received closely together and small or no weights to beacon 

frames received further apart, thereby creating many small communities of beacon frames. 

As a result, Gephi calculated 5,252 communities with a modularity of 0.999. The size 

distribution within each modularity class can be seen in Figure 18. 
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Figure 18. Size Distribution for beacon frames 
correlated by reception time 

D. RSSI METHOD 

The RSSI method had an accuracy of 0.506, precision of 0.284, a recall of 0.512, 

and a F-Score of 0.365. Much like the reception time method, the RSSI method was 

negatively impacted by its high number of FP (8968134) and FN (3389020) generated by 

the edge weighting function. The RSSI method’s F-Score was improved compared to the 

reception time method due to the larger amount of TP (3551536) and TN (9096310). This 

resulted in the weighted, undirected graphs seen in Figure 19 and Figure 20. 
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Figure 19. Weighted, undirected graph of beacon frames 
colored by AP and correlated by RSSI 

 

Figure 20. Weighted, undirected graph of beacon frames 
colored by modularity class and correlated by RSSI 

The modularity measure function in Gephi calculated that the modularity of the 

graph was 0.549 with a total of four communities present. The size distribution of the 

number of vertices, or nodes, within each modularity class for the RSSI method is seen in 

Figure 21. 
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Figure 21. Size distribution of beacon frames 
correlated by RSSI 

This method is better able to create communities of vertices that reflect the ground 

truth that the data set consists of beacon frames from four APs, however, within those 

communities, there exists a mix of beacon frames which hinders definitive correlation of a 

VAP to the source AP. One factor that significantly impacts the ability of the RSSI method 

is the fact that beacon frames received by Wireshark from the same AP have different 

RSSIs due to the placement of the physical APs and multipath interference within the 

building where the collection was conducted. A histogram of the RSSIs of every beacon 

frame collected from its physical AP can be seen in Figure 22. 
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Figure 22. Histogram of RSSI for all APs 

Due to the fact that there are multiple overlaps in RSSI for each physical AP, the edge 

weighting function is unable to adequately differentiate one AP from another based on the 

RSSI of the beacon frame received. If there were more definitive delineations between the 

RSSIs of the APs, it is possible that the RSSI method would have a higher F-Score.  

E. CONCLUSIONS 

Of the three methods examined in this study, the timestamp method was the most 

promising, with a F-Score of 0.779. The RSSI was the second most promising method, 

albeit with a much lower F-Score of 0.365. The reception time was demonstrated to have 

little ability to correlate beacon frames and VAPs to parent APs and had a F-Score of 

0.0009. The TP, FP, TN, FN, accuracy, precision, recall, and F-Score for all three methods 

examined in this study are displayed in Table 1. 
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Table 1. Summary of experiment results 

  

Method TP FP TN FN Accuracy Precision Recall F-Score 
Timestamp 4431650 0 18064444 2508906 0.900 1.0 0.639 0.779 
RSSI 3551536 8968134 9096310 3389020 0.506 0.284 0.512 0.365 
Reception 
Time 3330 21662 18042782 6937226 0.722 0.133 0.0005 0.0009 
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V. CONCLUSIONS AND FUTURE WORK 

A. FINDINGS AND CONCLUSIONS 

In examining the three proposed methods for correlating VAPs through beacon 

frames, it turns out that if APs in a WLAN have individual timestamp values, then the 

VAPs can be correlated almost perfectly. In the absence of a unique timestamp, the RSSI 

method provides mediocre to poor results and does not adequately correlate VAPs to the 

point where a malicious actor could definitively correlate a VAP to an AP via this method 

alone. The reception time method performed so poorly that it does not provide any 

correlation capability. 

B. CONTRIBUTIONS OF THIS STUDY 

The contributions of this study include: 

• Evaluating the concepts in [14] of using RSSI fingerprinting to correlate 

VAPs to an AP. Due to the RF environment inherent to an indoor location 

with multiple APs, it is not possible to reliably fingerprint an AP for the 

purposes of VAP correlation. 

• Advancing the concepts in [1] by examining some of the propositions 

advanced by the authors on beacon frames. While the authors’ seventh 

proposition that VAPs can be correlated through reception time of probe 

responses did not carry over to beacon frames, this study was able to 

confirm that the timestamp field in beacon frames can be used effectively 

to correlate VAPs. 

• Examining the depth of the vulnerability of DoD WLANs to correlation of 

VAPs. 

• Proposing techniques to reduce or eliminate the effectiveness of 

correlation-style attacks on WLANs. 
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C. STEPS TO REDUCE THE EFFECTIVENESS OF VAP CORRELATION 
EFFORTS 

As demonstrated by this study, if APs in a WLAN do not have unique timestamp 

values, then the timestamp method does not work at all. With that in mind, it is advisable 

for security professionals to cycle power to the WLAN so that all APs come online 

simultaneously. APs that are located indoors are inherently more resistant to correlation 

via the RSSI method due to multipath interference and no special measures need to be 

taken to defeat this method. 

D. RECOMMENDATIONS FOR FUTURE WORK 

There are multiple avenues for further study of WLAN security: 

• This study was conducted in a homogeneous environment with APs 

sourced from the same manufacturer. Future studies should address 

heterogeneous environments consisting of different makes and models of 

APs. It is also worth examining whether different particular makes and 

models of APs present different attributes which would enable or enhance 

VAP correlation. 

• Another avenue of investigation is to combine the work of this study and 

[1] to determine whether it is possible to use probe response and beacon 

frame attributes to achieve better correlation results than those presented 

in this thesis.  

• This study’s confirmation of the timestamp was dependent upon making 

the timestamp fields artificially unique by subtracting a random value 

between one and 10,000,000. Future work can examine WLANs which 

have APs with unique timestamps and determine whether this method 

continues to be effective and whether any steps can be taken to improve 

upon it. 
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APPENDIX A. TIMESTAMP PYTHON CODE 

This program was written in Jupyter Notebook on a computer with Python 3.7.0 

installed. Comments have been added to the code to provide further information to the 

reader. All of the BSSIDs for the VAPs have been replaced with 

“XX:XX:XX:XX:XX:XX.” 

#Program for timestamp edge creation, results analysis, and τ graphs 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from random import randint 
import datetime 
from datetime import timedelta 
import decimal 
import itertools 
from datetime import datetime 
from pandas import DataFrame, Series 
from itertools import combinations 
import matplotlib.pyplot as plt 
import seaborn as sns 
 
#Import CSV of beacon frames 
nodes_file = ‘BeaconFrames.csv’ 
 
#Declare name of edges file 
edges_file = ‘Edges.csv’ 
 
#Read entire csv file into dataframe ‘df_nodes’ 
df = pd.read_csv(nodes_file)  
 
#Create a dataframe with ID, reception time, timestamp, and MAC Address 
df_time_stamp = df[[‘ID’, ’Reception Time’, ‘Timestamp’, ‘MAC Address’]].copy() 
 
#Create a “source list” for edges 
source_list = df[‘ID’].values.tolist() 
 
#Create a “target list” for edges 
target_list = df[‘ID’].values.tolist() 
 
#Create edges between all nodes (combine source and target list) 
new_source = [] 
new_dest = [] 
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for a, b in itertools.product(source_list, target_list): 
 
    #Avoid self-loops (edges to/from the same node) 
    if a == b: 
        continue 
    else: 
        new_source.append(a) 
        new_dest.append(b) 
 
#Create a dataframe from the combination of source/target Ids 
combination_df = pd.DataFrame({‘Source’: new_source, ‘Target’: new_dest}) 
 
#Generate unique timestamp if timestamps are increasing uniformly 
#Row Counter 
i = 0 
 
#Holds unique timestamp-Reception Time(microseconds)| 
ap_1 = [] 
 
#Holds unique timestamp-Reception Time(microseconds)| 
ap_2 = [] 
 
#Holds unique timestamp-Reception Time(microseconds)| 
ap_3 = [] 
 
#Holds unique timestamp-Reception Time(microseconds)| 
ap_4 = [] 
 
#Holds the reception time in microseconds for every beacon frame 
ap_total = [] 
 
#Holds the unique timestamp for AP one 
ap_1_time = [] 
 
#Holds the unique timestamp for AP two 
ap_2_time = [] 
 
#Holds the unique timestamp for AP three 
ap_3_time = [] 
 
#Holds the unique timestamp for AP four 
ap_4_time = [] 
 
#Holds total time for every single beacon frame 
ap_total_time =[] 
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#Holds τ for every AP one 
ap_1_unique_time = [] 
 
#Holds τ for every AP two 
ap_2_unique_time = [] 
 
#Holds τ for every AP three 
ap_3_unique_time = [] 
 
#Holds τ for every AP four 
ap_4_unique_time = [] 
 
#Holds reception time for every AP one 
ap_1_reception_time = [] 
 
#Holds reception time for every AP two 
ap_2_reception_time = [] 
 
#Holds reception time for every AP three 
ap_3_reception_time = [] 
 
#Holds reception time for every AP four 
ap_4_reception_time = [] 
 
#Time format for parsing date time from a string to microseconds 
time_format = ‘%b %d, %Y %H:%M:%S.%f000 %Z’ 
 
#Generate Random Number for AP one 
ap1_value = randint(1, 10000000) 
 
#Generate Random Number for AP two 
ap2_value = randint(1, 10000000) 
 
#Generate Random Number for AP three 
ap3_value = randint(1, 10000000) 
 
#Generate Random Number for AP four 
ap4_value = randint(1, 10000000) 
 
#While loop to go through every row of the dataframe 
while i < len(df_time_stamp): 
 
    #Turn data frame row into a tuple so ID, timestamp, and MAC Address can be accessed 
    ap_tuple = df_time_stamp.iloc[i] 
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    #ID is the 0th element 
    ap_id = ap_tuple[0] 
 
    #Reception time (string format) is the 1st element 
    reception_time = ap_tuple[1] 
 
    #Timestamp is the 2nd element 
    ap_str_time = ap_tuple[2] 
 
    #Timestamp is a string in hexadecimal format and needs to be converted to an integer 
    #in base 10 format 
    ap_mac_time = int(ap_str_time, 10) 
 
    #Mac Address is the 3rd element 
    ap_mac_addr = ap_tuple[3] 
 
    #Parse reception time using strptime 
    date_time_object = datetime.strptime(reception_time, time_format) 
 
    #Take minutes from parsed time and convert to microseconds 
    minute = 60000000*date_time_object.minute 
 
    #Take seconds from parsed time and convert to microseconds 
    second = 1000000*date_time_object.second 
 
    #Take microseconds from parsed time (no conversion needed) 
    microsecond = date_time_object.microsecond 
 
    #Round microseconds to the closest millisecond because the accuracy of the system  
    #clock is unknown 
    rounded_microsecond = round(microsecond,-3) 
 
    #Calculate total time for timestamp (microseconds) 
    total_time = minute + second + rounded_microsecond 
 
    #Perform a string match against the BSSID for the first VAP for AP one 
    if ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
 
        #Subtract random value from timestamp to get a unique value (ap1_time) 
        ap_1_time = ap_mac_time - ap1_value 
 
        #Subtract reception time in microseconds to account for time passage 
        unique_time = abs(ap_1_time - total_time) 
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        #Append “unique time” to list ap_1 
        ap_1.append(unique_time) 
 
        #Append “unique time” to list ap_total, this will go into a DF for edge weighting  
        #function 
        ap_total.append(unique_time) 
 
        #Append AP one time (timestamp-random value) to list ap_1_time 
        ap_1_unique_time.append(unique_time) 
 
        #Append total time (minute + seconds + microseconds) in microseconds to  
        #ap_1_reception_time 
        ap_1_reception_time.append(total_time) 
 
    #Perform a string match against the second BSSID for the VAP for AP one 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
        ap_1_time = ap_mac_time - ap1_value 
        unique_time = abs(ap_1_time - total_time) 
        ap_1.append(unique_time) 
        ap_total.append(unique_time) 
        ap_1_unique_time.append(unique_time) 
        ap_1_reception_time.append(total_time) 
 
    #Perform a string match against the first BSSID for the VAP for AP two 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
        ap_2_time = ap_mac_time - ap2_value 
        unique_time = abs(ap_2_time - total_time) 
        ap_2.append(unique_time) 
        ap_total.append(unique_time) 
        ap_2_unique_time.append(unique_time) 
        ap_2_reception_time.append(total_time) 
 
    #Perform a string match against the second BSSID for the VAP for AP two 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
        ap_2_time = ap_mac_time - ap2_value 
        unique_time = abs(ap_2_time - total_time) 
        ap_2.append(unique_time) 
        ap_total.append(unique_time) 
        ap_2_unique_time.append(unique_time) 
        ap_2_reception_time.append(total_time) 
 
    #Perform a string match against the first BSSID for the VAP for AP three 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
        ap_3_time = ap_mac_time - ap3_value 
        unique_time = abs(ap_3_time - total_time) 
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        ap_3.append(unique_time) 
        ap_total.append(unique_time) 
        ap_3_unique_time.append(unique_time) 
        ap_3_reception_time.append(total_time) 
 
    #Perform a string match against the second BSSID for the VAP for AP three 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
        ap_3_time = ap_mac_time - ap3_value 
        unique_time = abs(ap_3_time - total_time) 
        ap_3.append(unique_time) 
        ap_total.append(unique_time) 
        ap_3_unique_time.append(unique_time) 
        ap_3_reception_time.append(total_time) 
 
    #Perform a string match against the first BSSID for the VAP for AP 4 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
        ap_4_time = ap_mac_time - ap4_value 
        unique_time = abs(ap_4_time - total_time) 
        ap_4.append(unique_time) 
        ap_total.append(unique_time) 
        ap_4_unique_time.append(unique_time) 
        ap_4_reception_time.append(total_time) 
 
    #Perform a string match against the second BSSID for the VAP for AP 4 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
        ap_4_time = ap_mac_time - ap4_value 
        unique_time = abs(ap_4_time - total_time) 
        ap_4.append(unique_time) 
        ap_total.append(unique_time) 
        ap_4_unique_time.append(unique_time) 
        ap_4_reception_time.append(total_time) 
 
    #Catch any cases that do not match any of the above 
    else: 
        print(“Not Match”) 
 
    #’i’ increments through the rows  
    i += 1 
 
#Create data frame consisting solely of timestamps 
mac_time_df= pd.DataFrame({‘Timestamp’: ap_total}) 
 
#Edge weight function to determine edge weight for each potential connection generated 
#’row_count’ counts the row number and is incremented 
row_count = 0 
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#’output’ is a list to store edge weight function output 
output = [] 
 
#While row_count is less than the length of combination_df, 
#execute the edge weight function  
while row_count < len(combination_df): 
 
    #Retrieve source and target tuple from ‘combination_df’ 
    src_tgt_tuple = combination_df.iloc[row_count] 
 
    #Source node is the first element 
    src = src_tgt_tuple[0] 
 
    #Target node is the second element 
    tgt = src_tgt_tuple[1] 
 
    #Pull the source node timestamp from the mac_time_df dataframe 
    src_mac_time = mac_time_df.iloc[src] 
 
    #Pull the target node timestamp from the mac_time_df dataframe 
    tgt_mac_time = mac_time_df.iloc[tgt] 
 
    #Compute the absolute value difference between the source and target timestamp 
    time_delta = abs(src_mac_time-tgt_mac_time) 
 
    #If the time delta is less than/equal to 500, then it is likely the same time 
    #and an edge weight of 1 is assigned 
    if time_delta.item() <= 500: 
        edge_weight = 1 
        output.append(edge_weight) 
 
    #If the time delta is greater than 500, then it is not likely the same time 
    #and an edge weight of 0 is assigned (i.e., no edge exists between the source 
    #and target nodes) 
    else: 
        edge_weight = 0 
        output.append(edge_weight) 
 
    #Increment row count 
    row_count +=1 
 
#Convert output list into a data frame 
df_weights = pd.DataFrame({‘Weight’:output}) 
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#Create a dataframe of all source nodes and destination nodes and the edge weight of those 
#connections 
final_df = pd.DataFrame({‘Source’: new_source, ‘Target’: new_dest, ‘Weight’:output}) 
 
#Place “ID” over first column to prevent column title shifting to the left when it is imported  
#into Gephi 
final_df.index.name = ‘ID’ 
 
#Write to a CSV 
final_df.to_csv(edges_file, sep=‘,’) 
 
#Analysis of TP, FP, TN, FN, accuracy, precision, recall, and F-Score 
#Declare variables for BSSIDs for all VAPs for APs 1–4 
ap_one_one = “XX:XX:XX:XX:XX:XX” 
ap_one_two = “XX:XX:XX:XX:XX:XX” 
ap_two_one = “XX:XX:XX:XX:XX:XX” 
ap_two_two = “XX:XX:XX:XX:XX:XX” 
ap_three_one = “XX:XX:XX:XX:XX:XX” 
ap_three_two = “XX:XX:XX:XX:XX:XX” 
ap_four_one = “XX:XX:XX:XX:XX:XX” 
ap_four_two = “XX:XX:XX:XX:XX:XX” 
 
#Maintain count of row in Dataframe 
row_count = 0 
 
#Maintains count of TP 
true_positive = 0 
 
#Maintains count of FP 
false_positive = 0 
 
#Maintains count of TN 
true_negative = 0 
 
#Maintains count of FN 
false_negative = 0 
 
#While loop to go through every row of the dataframe 
while row_count < len(final_df): 
 
    #Unpacks row from final_df into a 3 tuple (src, dest, and weight) 
    edge_tuple = final_df.iloc[row_count] 
    src = int(edge_tuple[0]) 
    tgt = int(edge_tuple[1]) 
    edge_weight = edge_tuple[2] 
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    #Unpacks row from df into a tuple (mac addr of the edge source and mac addr of the  
    #edge target) 
    beacon_frame_tuple_src = df.iloc[src] 
    mac_addr_src = beacon_frame_tuple_src[6] 
    beacon_frame_tuple_tgt = df.iloc[tgt]  
    mac_addr_tgt = beacon_frame_tuple_tgt[6] 
 
    #Connection exists: Evaluate whether correct (True Positive) or incorrect (False  
    #Positive) 
 
    #If edge weight is anything but zero, it has a weight 
    if edge_weight != 0: 
 
        #If source and target MAC Address match, it is a true positive (Connection should  
        #exist and does) 
        #AP one 
        if (mac_addr_src == ap_one_one and mac_addr_tgt == ap_one_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_one_one and mac_addr_tgt == ap_one_two): 
            true_positive += 1 
        elif (mac_addr_src == ap_one_two and mac_addr_tgt == ap_one_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_one_two and mac_addr_tgt == ap_one_two): 
            true_positive += 1 
 
        #AP two 
        elif (mac_addr_src == ap_two_one and mac_addr_tgt == ap_two_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_two_one and mac_addr_tgt == ap_two_two): 
            true_positive += 1 
        elif (mac_addr_src == ap_two_two and mac_addr_tgt == ap_two_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_two_two and mac_addr_tgt == ap_two_two): 
            true_positive += 1 
 
        #AP three 
        elif (mac_addr_src == ap_three_one and mac_addr_tgt == ap_three_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_three_one and mac_addr_tgt == ap_three_two): 
            true_positive += 1 
        elif (mac_addr_src == ap_three_two and mac_addr_tgt == ap_three_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_three_two and mac_addr_tgt == ap_three_two): 
            true_positive += 1 
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        #AP four 
        elif (mac_addr_src == ap_four_one and mac_addr_tgt == ap_four_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_four_one and mac_addr_tgt == ap_four_two): 
            true_positive += 1 
        elif (mac_addr_src == ap_four_two and mac_addr_tgt == ap_four_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_four_two and mac_addr_tgt == ap_four_two): 
            true_positive += 1 
 
        #If source and target MAC Address do not match, it is a false positive (Connection  
        #exists and shouldn’t) 
        else: 
            false_positive += 1 
 
    #Connection does not exist: Evaluate whether correct (True Negative) or incorrect (False  
   #Negative) 
    elif edge_weight == 0: 
 
        #If source and target MAC Address match, it is a false negative (Connection should  
        #exist but doesn’t) 
        #AP one 
        if (mac_addr_src == ap_one_one and mac_addr_tgt == ap_one_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_one_one and mac_addr_tgt == ap_one_two): 
            false_negative += 1 
        elif (mac_addr_src == ap_one_two and mac_addr_tgt == ap_one_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_one_two and mac_addr_tgt == ap_one_two): 
            false_negative += 1 
 
        #AP two 
        elif (mac_addr_src == ap_two_one and mac_addr_tgt == ap_two_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_two_one and mac_addr_tgt == ap_two_two): 
            false_negative += 1 
        elif (mac_addr_src == ap_two_two and mac_addr_tgt == ap_two_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_two_two and mac_addr_tgt == ap_two_two): 
            false_negative += 1 
 
        #AP three 
        elif (mac_addr_src == ap_three_one and mac_addr_tgt == ap_three_one): 
            false_negative += 1 
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        elif (mac_addr_src == ap_three_one and mac_addr_tgt == ap_three_two): 
            false_negative += 1 
        elif (mac_addr_src == ap_three_two and mac_addr_tgt == ap_three_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_three_two and mac_addr_tgt == ap_three_two): 
            false_negative += 1 
 
        #AP four 
        elif (mac_addr_src == ap_four_one and mac_addr_tgt == ap_four_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_four_one and mac_addr_tgt == ap_four_two): 
            false_negative += 1 
        elif (mac_addr_src == ap_four_two and mac_addr_tgt == ap_four_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_four_two and mac_addr_tgt == ap_four_two): 
            false_negative += 1 
 
        #If source and target MAC Address do not match, it is a true negative (Connection  
        #shouldn’t exist and doesn’t) 
        else: 
            true_negative += 1 
 
    #Increment row count 
    row_count += 1 
 
#Calculate the accuracy of the method 
artificial_timestamp_accuracy=(true_positive+true_negative)/(true_positive+ 
false_positive + false_negative + true_negative) 
print(artificial_timestamp_accuracy) 
 
#Calculate recall of the method 
artificial_timestamp_recall = true_positive/(true_positive + false_negative) 
print(artificial_timestamp_recall) 
 
#Calculate the precision of the method 
artificial_timestamp_precision = true_positive/(true_positive+false_positive) 
print(artificial_timestamp_precision) 
 
#Calculate the F-Score of the method 
artificial_timestamp_f_score=true_positive/(true_positive+0.5*(false_positive+ 
false_negative)) 
print(artificial_timestamp_f_score) 
 
#Plot “jitter” in AP times 
#Step 1: Create a dataframe from data generated from Step 7 above 
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ap_1_unique_df=pd.DataFrame({‘ReceptionTime (microseconds)’: ap_1_reception_time, 
‘τ (microseconds)’: ap_1_unique_time}) 
 
#Step 2: Select every 9th row to plot to reduce number of data points and 
#make the graph easier to interpret 
ap_1_jitter = ap_1_unique_df[ap_1_unique_df.index % 9 ==0] 
 
#Step 3: Create a line graph from the dataframe created above and save it as a .png file 
sns_fig = sns.lineplot(x= “Reception Time (microseconds),” y= “τ (microseconds),” data= 
ap_1_jitter) 
 
#Save graph 
fig = sns_fig.get_figure() 
fig.savefig(‘AP one: τ v.s. Time.png’)  
 
#Step 4: Repeat steps 1–3 for AP two 
ap_2_unique_df=pd.DataFrame({‘ReceptionTime (microseconds)’: ap_2_reception_time, 
‘τ (microseconds)’: ap_2_unique_time}) 
ap_2_jitter = ap_2_unique_df[ap_2_unique_df.index % 9 ==0] 
sns_fig = sns.lineplot(x= “Reception Time (microseconds),” y= “τ (microseconds),” data= 
ap_2_jitter) 
 
#Save graph 
fig = sns_fig.get_figure() 
fig.savefig(‘AP two: τ v.s. Time.png’)  
 
#Step 5: Repeat steps 1–3 for AP three 
ap_3_unique_df=pd.DataFrame({‘ReceptionTime (microseconds)’: ap_3_reception_time, 
‘τ (microseconds)’: ap_3_unique_time}) 
ap_3_jitter = ap_3_unique_df[ap_3_unique_df.index % 9 ==0] 
sns_fig = sns.lineplot(x= “Reception Time (microseconds),” y= “τ (microseconds),” data= 
ap_3_jitter) 
 
#Save figure 
fig = sns_fig.get_figure() 
fig.savefig(‘AP three: τ v.s. Time.png’)  
 
#Step 6: Repeat steps 1–3 for AP 4 
ap_4_unique_df=pd.DataFrame({‘ReceptionTime (microseconds)’: ap_4_reception_time, 
‘τ (microseconds)’: ap_4_unique_time}) 
ap_4_jitter = ap_4_unique_df[ap_4_unique_df.index % 9 ==0] 
sns_fig = sns.lineplot(x= “Reception Time (microseconds),” y= “τ (microseconds),” data= 
ap_4_jitter) 
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#Save figure 
fig.savefig(‘AP 4: τ v.s. Time.png’) 
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APPENDIX B. RECEPTION TIME PYTHON CODE 

This program was written in Jupyter Notebook on a computer with Python 3.7.0 

installed. Comments have been added to the code to provide further information to the reader. 

All of the BSSIDs for the VAPs have been replaced with “XX:XX:XX:XX:XX:XX.” 

#Program for reception time edge creation and results analysis 
import pandas as pd 
import numpy as np 
from datetime import datetime 
from pandas import DataFrame, Series 
from itertools import combinations 
from functools import reduce 
import itertools 
 
#Import CSV of beacon frames 
nodes_file = ‘BeaconFrames.csv’ 
 
#Declare name of edges file 
edges_file = ‘Edges.csv’ 
 
#Open Node file, create node dataframe named ‘df_node’ of ID and reception time 
df = pd.read_csv(nodes_file) 
 
#Create a dataframe consisting of Id and Time 
df_nodes = df[[‘ID’, ‘Reception Time’]] 
 
#Create source list for edges 
source_list = df[‘ID’].values.tolist() 
 
#Create target list for edges 
target_list = df[‘ID’].values.tolist() 
 
#Convert values in the dataframe to a list 
weight_list = df[‘Reception Time’].values.tolist() 
 
#Create a dataframe of time values 
df_Time_value = df[‘Reception Time’] 
 
#Create edges between all nodes 
new_source = [] 
new_dest = [] 
for a, b in itertools.product(source_list, target_list): 
    if a == b: 
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        #Avoid self-loops (edges to/from the same node) 
        continue 
    else: 
        new_source.append(a) 
        new_dest.append(b) 
 
#Create a dataframe of source and target nodes 
new_df = pd.DataFrame({‘Source’: new_source, ‘Target’: new_dest}) 
 
#Edge weight function 
#’row_count’ counts the row number and is incremented 
row_count = 0 
 
#’output’ is a list to store edge weight function output 
output = [] 
 
#Time format for parsing date time 
time_format = ‘%b %d, %Y %H:%M:%S.%f000 %Z’ 
 
#While loop to go through every row of the dataframe 
while row_count < len(new_df): 
 
    #Turn dataframe row into a tuple so that the ID for the edge nodes can be accessed 
    src_tgt_tuple = new_df.iloc[row_count] 
 
    #Source node is the 0th element 
    src = src_tgt_tuple[0] 
 
    #Target node is the 1st element 
    tgt = src_tgt_tuple[1] 
 
    #Pull the source node time from the df_Time_value data frame 
    src_time = df_Time_value[src] 
 
    #Pull the target node time from the df_Time_value data frame 
    tgt_time = df_Time_value[tgt] 
 
    #Convert the source node’s reception time into a date time object 
    date_time_object_src = datetime.strptime(src_time, time_format) 
 
    #Take minutes from parsed time and convert to microseconds 
    src_minute = 60000000*date_time_object_src.minute 
 
    #Take seconds from parsed time and convert to microseconds 
    src_second = 1000000*date_time_object_src.second  
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    #Take microseconds from parsed time 
    src_microsecond = date_time_object_src.microsecond 
 
    #Round microseconds to the closest millisecond because the accuracy of the system  
    #clock is unknown 
    src_reception_time = src_minute + src_second + src_microsecond 
 
    #Convert the target node’s reception time into a date time object     
    date_time_object_tgt = datetime.strptime(tgt_time, time_format) 
 
    #Take minutes from parsed time and convert to microseconds 
    tgt_minute = 60000000*date_time_object_tgt.minute 
 
    #Take seconds from parsed time and convert to microseconds 
    tgt_second = 1000000*date_time_object_tgt.second 
 
    #Take microseconds from parsed time 
    tgt_microsecond = date_time_object_tgt.microsecond 
 
    #Calculate target node’s reception time using seconds and milliseconds 
    tgt_reception_time = tgt_minute + tgt_second + tgt_microsecond 
 
    #Calculate absolute value of source node reception minus target node reception time 
    reception_time_func = abs(src_reception_time-tgt_reception_time) 
 
    #Determine if ΔRT is less than/equal to 621 microseconds 
    if reception_time_func <= 621: 
        edge_weight = 1.0 
 
    #Determine if ΔRT is less than/equal to 700 microseconds 
    elif reception_time_func <= 700: 
        edge_weight = 0.75 
 
    #Determine if ΔRT is less than/equal to 1024 microseconds 
    elif reception_time_func <= 1024: 
        edge_weight = 0.50 
 
    #Determine if ΔRT is greater than 1024 microseconds 
    elif reception_time_func > 1024: 
        edge_weight = 0 
 
    #Place weight into output list 
    output.append(edge_weight) 
    #Increment row 
    row_count += 1 
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#Add df_weights to ‘newer_df’ (master dataframe) 
final_df = pd.DataFrame({‘Source’: new_source, ‘Target’: new_dest, ‘Weight’:output}) 
 
#Place “ID” over first column to prevent column title shifting to the left in Gephi 
final_df.index.name = ‘ID’ 
 
#Write to a CSV 
final_df.to_csv(edges_file, sep=‘,’) 
 
#Analysis of TP, FP, TN, FN, accuracy, precision, recall, and F-Score 
#Declare variables for BSSIDs for all VAPs for APs 1–4 
ap_one_one = “XX:XX:XX:XX:XX:XX” 
ap_one_two = “XX:XX:XX:XX:XX:XX” 
ap_two_one = “XX:XX:XX:XX:XX:XX” 
ap_two_two = “XX:XX:XX:XX:XX:XX” 
ap_three_one = “XX:XX:XX:XX:XX:XX” 
ap_three_two = “XX:XX:XX:XX:XX:XX” 
ap_four_one = “XX:XX:XX:XX:XX:XX” 
ap_four_two = “XX:XX:XX:XX:XX:XX” 
 
#Maintain count of row in Dataframe 
row_count = 0 
 
#Maintains count of TP 
true_positive = 0 
 
#Maintains count of FP 
false_positive = 0 
 
#Maintains count of TN 
true_negative = 0 
 
#Maintains count of FN 
false_negative = 0 
 
#While loop to go through every row of the dataframe 
while row_count < len(final_df): 
 
    #Unpacks row from final_df into a 3 tuple (src, dest, and weight) 
    edge_tuple = final_df.iloc[row_count] 
    src = int(edge_tuple[0]) 
    tgt = int(edge_tuple[1]) 
    edge_weight = edge_tuple[2] 
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    #Unpacks row from df into a tuple (mac addr of the edge source and mac addr of the  
    #edge target) 
    beacon_frame_tuple_src = df.iloc[src] 
    mac_addr_src = beacon_frame_tuple_src[6] 
    beacon_frame_tuple_tgt = df.iloc[tgt]  
    mac_addr_tgt = beacon_frame_tuple_tgt[6] 
 
    #Connection exists: Evaluate whether correct (True Positive) or incorrect (False  
    #Positive) 
    if edge_weight != 0: 
 
        #If source and target MAC Address match, it is a true positive (Connection should  
        #exist and does) 
        #AP one 
        if (mac_addr_src == ap_one_one and mac_addr_tgt == ap_one_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_one_one and mac_addr_tgt == ap_one_two): 
            true_positive += 1 
        elif (mac_addr_src == ap_one_two and mac_addr_tgt == ap_one_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_one_two and mac_addr_tgt == ap_one_two): 
            true_positive += 1 
 
        #AP two 
        elif (mac_addr_src == ap_two_one and mac_addr_tgt == ap_two_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_two_one and mac_addr_tgt == ap_two_two): 
            true_positive += 1 
        elif (mac_addr_src == ap_two_two and mac_addr_tgt == ap_two_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_two_two and mac_addr_tgt == ap_two_two): 
            true_positive += 1 
 
        #AP three 
        elif (mac_addr_src == ap_three_one and mac_addr_tgt == ap_three_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_three_one and mac_addr_tgt == ap_three_two): 
            true_positive += 1 
        elif (mac_addr_src == ap_three_two and mac_addr_tgt == ap_three_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_three_two and mac_addr_tgt == ap_three_two): 
            true_positive += 1 
 
        #AP four 
        elif (mac_addr_src == ap_four_one and mac_addr_tgt == ap_four_one): 
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            true_positive += 1 
        elif (mac_addr_src == ap_four_one and mac_addr_tgt == ap_four_two): 
            true_positive += 1 
        elif (mac_addr_src == ap_four_two and mac_addr_tgt == ap_four_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_four_two and mac_addr_tgt == ap_four_two): 
            true_positive += 1 
 
        #If source and target MAC Address do not match, it is a false positive (Connection  
        #exists and shouldn’t) 
        else: 
            false_positive += 1 
 
    #Connection does not exist: Evaluate whether correct (True Negative) or incorrect (False  
    #Negative) 
    elif edge_weight == 0: 
 
        #If source and target MAC Address match, it is a false negative (Connection should  
        #exist but doesn’t) 
        #AP one 
        if (mac_addr_src == ap_one_one and mac_addr_tgt == ap_one_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_one_one and mac_addr_tgt == ap_one_two): 
            false_negative += 1 
        elif (mac_addr_src == ap_one_two and mac_addr_tgt == ap_one_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_one_two and mac_addr_tgt == ap_one_two): 
            false_negative += 1 
 
        #AP two 
        elif (mac_addr_src == ap_two_one and mac_addr_tgt == ap_two_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_two_one and mac_addr_tgt == ap_two_two): 
            false_negative += 1 
        elif (mac_addr_src == ap_two_two and mac_addr_tgt == ap_two_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_two_two and mac_addr_tgt == ap_two_two): 
            false_negative += 1 
 
        #AP three 
        elif (mac_addr_src == ap_three_one and mac_addr_tgt == ap_three_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_three_one and mac_addr_tgt == ap_three_two): 
            false_negative += 1 
        elif (mac_addr_src == ap_three_two and mac_addr_tgt == ap_three_one): 
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            false_negative += 1 
        elif (mac_addr_src == ap_three_two and mac_addr_tgt == ap_three_two): 
            false_negative += 1 
 
        #AP 4 
        elif (mac_addr_src == ap_four_one and mac_addr_tgt == ap_four_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_four_one and mac_addr_tgt == ap_four_two): 
            false_negative += 1 
        elif (mac_addr_src == ap_four_two and mac_addr_tgt == ap_four_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_four_two and mac_addr_tgt == ap_four_two): 
            false_negative += 1 
 
        #If source and target MAC Address do not match, it is a true negative (Connection  
        #shouldn’t exist and doesn’t) 
        else: 
            true_negative += 1 
 
    #Increment row 
    row_count += 1 
 
#Calculate the accuracy of the method 
reception_time_accuracy = (true_positive + true_negative)/(true_positive + false_positive 
+ false_negative + true_negative) 
print(reception_time_accuracy) 
 
#Calculate recall of the method 
reception_time_recall = true_positive/(true_positive + false_negative) 
print(reception_time_recall) 
 
#Calculate precision of the method 
reception_time_precision = true_positive/(true_positive+false_positive) 
print(reception_time_precision) 
 
#Calculate F-Score of the method 
reception_time_f_score=true_positive/(true_positive+0.5*(false_positive+ 
false_negative)) 
print(reception_time_f_score) 
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APPENDIX C. RSSI PYTHON CODE 

This program was written in Jupyter Notebook on a computer with Python 3.7.0 

installed. Comments have been added to the code to provide further information to the 

reader. All of the BSSIDs for the VAPs have been replaced with 

“XX:XX:XX:XX:XX:XX.” 

#Program for RSSI edge creation and results analysis 
import pandas as pd 
import numpy as np 
from datetime import datetime 
from pandas import DataFrame, Series 
from itertools import combinations 
from functools import reduce 
import itertools 
 
#Import CSV of beacon frames 
nodes_file = ‘BeaconFrames.csv’ 
 
#Declare name of edges file 
edges_file = ‘Edges.csv’ 
 
# Open Node file and create a dataframe called “df” 
df = pd.read_csv(nodes_file)  
 
#Create a dataframe called “df_nodes” consisting of the beacon frame ID number and RSSI 
df_nodes = df[[‘Id’, ‘dBm’]] 
 
#Create a list of edge sources from beacon frame IDs 
source_list = df[‘ID’].values.tolist() 
 
#Create a list of edge destinations from beacon frame Ids 
target_list = df[‘ID’].values.tolist() 
 
#Create a list called “weight_list” from dataframe consisting of beacon frame RSSIs 
weight_list = df[‘dBm’].values.tolist() 
 
#Create a dataframe called “df_dBm_value” from a dataframe consisting of beacon frame  
#RSSIs 
df_dBm_value = df[‘dBm’] 
 
#Create edges between all nodes 
new_source = [] 
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new_dest = [] 
for a, b in itertools.product(source_list, target_list): 
 
    #Avoid self-loops (edges to/from the same node) 
    if a == b: 
        continue 
    else: 
        new_source.append(a) 
        new_dest.append(b) 
 
#Create a dataframe of source and target nodes 
new_df = pd.DataFrame({‘Source’: new_source, ‘Target’: new_dest}) 
 
#Edge weighting function 
#’row_count’ counts the row number and is incremented 
row_count = 0 
 
#’output’ is a list to store edge weighting function output 
output = [] 
 
#While loop to go through every row of the dataframe 
while row_count < len(new_df): 
 
    #Retrieve source and dest tuple from ‘new_df’ 
    src_tgt_tuple = new_df.iloc[row_count] 
 
    #Source node is the 0th element 
    src = src_tgt_tuple[0] 
 
    #Target node is the 1st element 
    tgt = src_tgt_tuple[1] 
 
    #Pull the source node dBm from the df_dBm_value data frame 
    src_dBm = df_dBm_value[src] 
 
    #Pull the target node dBm from the df_dBm_value data frame 
    tgt_dBm = df_dBm_value[tgt] 
 
    #Get denominator for edge weighting function; |Src-Tgt| 
    func_denom = abs(src_dBm-tgt_dBm) 
 
     #If the absolute value difference for “func_denom” is not equal to zero, divide 0.15 by  
     #the value in that variable 
    if func_denom != 0: 
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        #If RSSI difference is greater than 1 dBm, do not assign an edge weight. This serves  
        #as a cut-off. 
        if func_denom > 1: 
            edge_weight = 0 
 
        #If RSSI difference is not greater than 1, then divide 0.15 by that value and store result  
        #in the variable “func_denom.” 
        else: 
            edge_weight = (0.15/func_denom) 
 
    #If the RSSIs are identical equal then weight the edge 1.5. 
    else: 
        edge_weight = 0.80 
 
    #Append edge weight to the list “output” 
    output.append(edge_weight) 
 
   #Increment the row 
    row_count += 1 
 
#Add df_weights to ‘newer_df’ (master dataframe) 
final_df = pd.DataFrame({‘Source’: new_source, ‘Target’: new_dest, ‘Weight’:output}) 
 
#Place “ID” over first column to prevent column title shifting to the left in Gephi 
final_df.index.name = ‘ID’ 
 
#Write to a CSV 
final_df.to_csv(edges_file, sep=‘,’) 
 
#Analysis of TP, FP, TN, FN, accuracy, precision, recall, and F-Score 
#Declare variables for BSSIDs for all VAPs for APs 1–4 
ap_one_one = “XX:XX:XX:XX:XX:XX” 
ap_one_two = “XX:XX:XX:XX:XX:XX” 
ap_two_one = “XX:XX:XX:XX:XX:XX” 
ap_two_two = “XX:XX:XX:XX:XX:XX” 
ap_three_one = “XX:XX:XX:XX:XX:XX” 
ap_three_two = “XX:XX:XX:XX:XX:XX” 
ap_four_one = “XX:XX:XX:XX:XX:XX” 
ap_four_two = “XX:XX:XX:XX:XX:XX” 
 
#Maintain count of row in dataframe 
row_count = 0 
 
#Maintains count of TP 
true_positive = 0 
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#Maintains count of FP 
false_positive = 0 
 
#Maintains count of TN 
true_negative = 0 
 
#Maintains count of FN 
false_negative = 0 
 
#While loop to go through every row of the dataframe 
while row_count < len(final_df): 
 
    #Unpacks row from final_df into a 3 tuple (src, dest, and weight) 
    edge_tuple = final_df.iloc[row_count] 
    src = int(edge_tuple[0]) 
    tgt = int(edge_tuple[1]) 
    edge_weight = edge_tuple[2] 
 
    #Unpacks row from df into a tuple (mac address of the edge source and mac address of  
    #the edge target) 
    beacon_frame_tuple_src = df.iloc[src] 
    mac_addr_src = beacon_frame_tuple_src[6] 
    beacon_frame_tuple_tgt = df.iloc[tgt]  
    mac_addr_tgt = beacon_frame_tuple_tgt[6] 
 
    #Connection exists: Evaluate whether correct (True Positive) or incorrect (False  
    #Positive) 
    if edge_weight != 0: 
 
        #If source and target MAC address match, it is a true positive (Connection should  
        #exist and does) 
        #AP one 
        if (mac_addr_src == ap_one_one and mac_addr_tgt == ap_one_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_one_one and mac_addr_tgt == ap_one_two): 
            true_positive += 1 
        elif (mac_addr_src == ap_one_two and mac_addr_tgt == ap_one_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_one_two and mac_addr_tgt == ap_one_two): 
            true_positive += 1 
 
        #AP two 
        elif (mac_addr_src == ap_two_one and mac_addr_tgt == ap_two_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_two_one and mac_addr_tgt == ap_two_two): 
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            true_positive += 1 
        elif (mac_addr_src == ap_two_two and mac_addr_tgt == ap_two_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_two_two and mac_addr_tgt == ap_two_two): 
            true_positive += 1 
 
        #AP three 
        elif (mac_addr_src == ap_three_one and mac_addr_tgt == ap_three_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_three_one and mac_addr_tgt == ap_three_two): 
            true_positive += 1 
        elif (mac_addr_src == ap_three_two and mac_addr_tgt == ap_three_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_three_two and mac_addr_tgt == ap_three_two): 
            true_positive += 1 
 
        #AP 4 
        elif (mac_addr_src == ap_four_one and mac_addr_tgt == ap_four_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_four_one and mac_addr_tgt == ap_four_two): 
            true_positive += 1 
        elif (mac_addr_src == ap_four_two and mac_addr_tgt == ap_four_one): 
            true_positive += 1 
        elif (mac_addr_src == ap_four_two and mac_addr_tgt == ap_four_two): 
            true_positive += 1 
 
        #If source and target MAC address do not match, it is a false positive (Connection  
        #exists and shouldn’t) 
        else: 
            false_positive += 1 
 
    #Connection does not exist: Evaluate whether correct (True Negative) or incorrect (False  
    #Negative) 
    elif edge_weight == 0: 
 
        #If source and target MAC address match, it is a false negative (Connection should  
        #exist but doesn’t) 
        #AP one 
        if (mac_addr_src == ap_one_one and mac_addr_tgt == ap_one_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_one_one and mac_addr_tgt == ap_one_two): 
            false_negative += 1 
        elif (mac_addr_src == ap_one_two and mac_addr_tgt == ap_one_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_one_two and mac_addr_tgt == ap_one_two): 
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            false_negative += 1 
 
        #AP two 
        elif (mac_addr_src == ap_two_one and mac_addr_tgt == ap_two_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_two_one and mac_addr_tgt == ap_two_two): 
            false_negative += 1 
        elif (mac_addr_src == ap_two_two and mac_addr_tgt == ap_two_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_two_two and mac_addr_tgt == ap_two_two): 
            false_negative += 1 
 
        #AP three 
        elif (mac_addr_src == ap_three_one and mac_addr_tgt == ap_three_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_three_one and mac_addr_tgt == ap_three_two): 
            false_negative += 1 
        elif (mac_addr_src == ap_three_two and mac_addr_tgt == ap_three_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_three_two and mac_addr_tgt == ap_three_two): 
            false_negative += 1 
 
        #AP four 
        elif (mac_addr_src == ap_four_one and mac_addr_tgt == ap_four_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_four_one and mac_addr_tgt == ap_four_two): 
            false_negative += 1 
        elif (mac_addr_src == ap_four_two and mac_addr_tgt == ap_four_one): 
            false_negative += 1 
        elif (mac_addr_src == ap_four_two and mac_addr_tgt == ap_four_two): 
            false_negative += 1 
 
        #If source and target MAC address do not match, it is a true negative (Connection  
        #shouldn’t exist and doesn’t) 
        else: 
            true_negative += 1 
 
    #Increment row 
    row_count += 1 
 
#Calculate the accuracy of the method 
reception_time_accuracy = (true_positive + true_negative)/(true_positive + false_positive 
+ false_negative + true_negative) 
print(signal_strength_accuracy) 
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#Calculate recall of the method 
reception_time_recall = true_positive/(true_positive + false_negative) 
print(signal_strength_recall) 
 
#Calculate precision of the method 
reception_time_precision = true_positive/(true_positive+false_positive) 
print(signal_strength_precision) 
 
#Calculate F-Score of the method 
reception_time_f_score=true_positive/(true_positive+0.5*(false_positive+ 
false_negative)) 
print(reception_time_f_score) 
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APPENDIX D. RSSI GRAPHING AND ANALYSIS PYTHON CODE 

This program was written in Jupyter Notebook on a computer with Python 3.7.0 

installed. Comments have been added to the code to provide further information to the reader. 

All of the BSSIDs for the VAPs have been replaced with “XX:XX:XX:XX:XX:XX.” 

#Program to perform analysis on the RSSIs for all of the collected beacon frames 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.mlab as mlab 
import scipy.stats 
from scipy.stats import norm 
 
#Declare nodes file 
nodes_file = ‘BeaconFrame.csv’ 
 
#Read entire csv file into dataframe ‘df_nodes’ 
df = pd.read_csv(nodes_file) 
 
#Plot histogram of signal strength across all APs 
plt.hist(df[‘dBm’]) 
 
#Label y axis 
plt.ylabel(“Number of beacon frames”) 
 
#Label x axis 
plt.xlabel(“dBm”) 
 
#Label graph with title 
plt.title(“Over All Distribution of Signal Strength Across all APs”) 
 
#Display graph to screen 
plt.show() 
 
#Sort RSSI by AP 
#List for AP one information 
ap_1_bin = [] 
 
#List for AP one RSSI 
ap_1_dBm = [] 
 
#List for AP two information 
ap_2_bin = [] 
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#List for AP two RSSI 
ap_2_dBm = [] 
 
#List for AP three information 
ap_3_bin = [] 
 
#List for AP three RSSI 
ap_3_dBm = [] 
 
#List for AP four information 
ap_4_bin = [] 
 
#List for AP four RSSI 
ap_4_dBm = [] 
 
#Counter for beacon frames for AP one 
ap_1_beacon_num = 0 
 
#Counter for beacon frames for AP two 
ap_2_beacon_num = 0 
 
#Counter for beacon frames for AP three 
ap_3_beacon_num = 0 
 
#Counter for beacon frames for AP four 
ap_4_beacon_num = 0 
 
#Counter for beacon frames for  all APs 
ap_dBm_total = [] 
 
#Row counter 
i = 0 
 
#Turn data frame into a tuple so ID, timestamp, and MAC address can be accessed 
while i < len(df): 
    ap_tuple = df.iloc[i] 
 
    #RSSI is the 5th element in the tuple 
    ap_dBm = ap_tuple[5] 
 
    #BSSID is the 7th element in the tuple 
    ap_mac_addr = ap_tuple[7] 
 
    #Perform a string match with the first AP one BSSID 
    if ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
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        #Place “ap_tuple” into “ap_1_bin” list 
        ap_1_bin.append(ap_tuple) 
 
        #Place “ap_dBm” into “ap_1_dBm” list 
        ap_1_dBm.append(ap_dBm) 
 
        #Place “ap_dBm” into “ap_dBm_total” list 
        ap_dBm_total.append(ap_dBm) 
 
        #Increment beacon frame counter for AP one 
        ap_1_beacon_num += 1 
 
    #Perform a string match with the second AP one BSSID 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
        ap_1_bin.append(ap_tuple) 
        ap_1_dBm.append(ap_dBm) 
        ap_dBm_total.append(ap_dBm) 
        ap_1_beacon_num += 1 
 
    #Perform a string match with the first AP two BSSID 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
        ap_2_bin.append(ap_tuple) 
        ap_2_dBm.append(ap_dBm) 
        ap_dBm_total.append(ap_dBm) 
        ap_2_beacon_num += 1 
 
    #Perform a string match with the second AP two BSSID 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
        ap_2_bin.append(ap_tuple) 
        ap_2_dBm.append(ap_dBm) 
        ap_dBm_total.append(ap_dBm) 
        ap_2_beacon_num += 1 
 
    #Perform a string match with the first AP three BSSID 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
        ap_3_bin.append(ap_tuple) 
        ap_3_dBm.append(ap_dBm) 
        ap_dBm_total.append(ap_dBm) 
        ap_3_beacon_num += 1 
 
    #Perform a string match with the second AP three BSSID 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
        ap_3_bin.append(ap_tuple) 
        ap_3_dBm.append(ap_dBm) 
        ap_dBm_total.append(ap_dBm) 
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        ap_3_beacon_num += 1 
 
    #Perform a string match with the first AP four BSSID 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XX”: 
        ap_4_bin.append(ap_tuple) 
        ap_4_dBm.append(ap_dBm) 
        ap_dBm_total.append(ap_dBm) 
        ap_4_beacon_num += 1 
 
    #Perform a string match with the second AP four BSSID 
    elif ap_mac_addr == “XX:XX:XX:XX:XX:XXX”: 
        ap_4_bin.append(ap_tuple) 
        ap_4_dBm.append(ap_dBm) 
        ap_dBm_total.append(ap_dBm) 
        ap_4_beacon_num += 1 
 
   #Catch any beacon frames that aren’t a part of APs one through four 
    else: 
        print(“Not Match”) 
 
    #Increment row counter 
    i += 1 
 
#Create dataframe for AP one 
df_ap_1_dBm = pd.DataFrame({‘Access Point 1 dBm’: ap_1_dBm}) 
 
#Create dataframe for AP two 
df_ap_2_dBm = pd.DataFrame({‘Access Point 2 dBm’: ap_2_dBm}) 
 
#Create dataframe for AP three 
df_ap_3_dBm = pd.DataFrame({‘Access Point 3 dBm’: ap_3_dBm}) 
 
#Create dataframe for AP four 
df_ap_4_dBm = pd.DataFrame({‘Access Point 4 dBm’: ap_4_dBm}) 
 
#Create dataframe for all APs 
df_dBm_total = pd.DataFrame({‘All Access Points dBm’: ap_dBm_total}) 
 
#Calculate mean, median for histogram for RSSIs for AP one 
mu, sigma = norm.fit(ap_1_dBm) 
print(“Mu is,” mu) 
print(“Sigma is,” sigma) 
#Plot histogram using “ap_1_dBm” list 
plt.hist(ap_1_dBm, 20, facecolor=‘green’, alpha=0.75) 
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#Label x axis 
plt.xlabel(‘Signal Strength (dBm)’) 
 
#Label y axis 
plt.ylabel(‘Frequency’) 
 
#Create title for graph 
plt.title(“Access Point 1”) 
 
#Show grid on plot 
plt.grid(True) 
 
#Display graph to screen 
plt.show() 
 
#Calculate mean, median for histogram for RSSIs for AP two 
mu, sigma = norm.fit(ap_2_dBm) 
print(“Mu is,” mu) 
print(“Sigma is,” sigma) 
plt.hist(ap_2_dBm, 20, facecolor=‘green’, alpha=0.75) 
plt.xlabel(‘Signal Strength (dBm)’) 
plt.ylabel(‘Frequency’) 
plt.title(“Access Point 2”) 
plt.grid(True) 
plt.show() 
 
#Calculate mean, median for histogram for RSSIs for AP three 
mu, sigma = norm.fit(ap_3_dBm) 
print(“Mu is,” mu) 
print(“Sigma is,” sigma) 
plt.hist(ap_3_dBm, 20, facecolor=‘green’, alpha=0.75) 
plt.xlabel(‘Signal Strength (dBm)’) 
plt.ylabel(‘Frequency’) 
plt.title(“Access Point 3”) 
plt.grid(True) 
plt.show() 
 
#Calculate mean, median for histogram for RSSIs for AP four 
mu, sigma = norm.fit(ap_4_dBm) 
print(“Mu is,” mu) 
print(“Sigma is,” sigma) 
plt.hist(ap_4_dBm, 20, facecolor=‘green’, alpha=0.75) 
plt.xlabel(‘Signal Strength (dBm)’) 
plt.ylabel(‘Frequency’) 
plt.title(“Access Point 4”) 
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plt.grid(True) 
plt.show() 
 
#Calculate mean, median for histogram for RSSIs for all APs 
mu, sigma = norm.fit(ap_dBm_total) 
print(“Mu is,” mu) 
print(“Sigma is,” sigma) 
plt.hist(ap_dBm_total, 20, facecolor=‘green’, alpha=0.75) 
plt.xlabel(‘Signal Strength (dBm)’) 
plt.ylabel(‘Frequency’) 
plt.title(“All Access Points”) 
plt.grid(True) 
plt.show() 
 
#Plot histogram of RSSIs for all APs, broken down by originating AP 
#Use Seaborn Deep graph style 
plt.style.use(‘seaborn-deep’) 
 
#Plot the histogram using data from “ap_1_dBm,” “ap_2_dBm,” “ap_3_dBm,” 
“ap_4_dBm” 
 
#Create a key on the graph labeling APs one through four 
fig = plt.hist([ap_1_dBm, ap_2_dBm, ap_3_dBm, ap_4_dBm], histtype = ‘bar’, align = 
‘mid’, label = [‘Access Point 1’, ‘Access Point 2’, ‘Access Point 3’, ‘Access Point 4’]) 
 
#Label x axis 
plt.xlabel(‘RSSI (dBm)’) 
 
#Label y axis 
plt.ylabel(‘Beacon Frames Received’) 
 
#Place graph key in the upper right of the graph 
plt.legend(loc=‘upper right’) 
 
#Show grids on plot 
plt.grid(True) 
 
#Tighten graph layout 
plt.tight_layout() 
 
#Save the graph as “dBm Histogram.png” 
plt.savefig(‘dBm Histogram.png’) 
 
#Display graph to screen 
plt.show() 
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